检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈飞武[1] 韦美菊[1] 叶亚平[1] 袁文霞[1]
机构地区:[1]北京科技大学化学与生物工程学院,北京100083
出 处:《大学化学》2015年第4期63-67,共5页University Chemistry
基 金:北京科技大学研究型示范教学项目;北京科技大学教育教学改革项目(Nos.JG2011Z09;JG2013M41)
摘 要:将溶液中某组分化学势的计算方式归纳为两种:(1)利用气液平衡时,溶液中某组分的化学势和气相中该组分的化学势相等这一关系来计算;(2)利用溶液中某组分化学势的全微分表达式直接积分来计算。在此基础上,给出了渗透压公式的一种新推导方式,并指出部分物理化学教材关于渗透压定义(Π=p2-p1)的不合理性以及推导渗透压时存在的不妥之处。There are two ways to calculate the chemical potential of a component in solution. One is that, in the gas-liquid phase equilibrium, the chemical potential of a component in solution is equal to its corresponding chemical potential in the gas phase;thus, the chemical potential of the component in solution can be easily obtained through the gas-liquid equilibrium once its chemical potential in gas phase is known. Another way is to integrate directly the total differential of the chemical potential of the component in solution. Based on this, a new way to derive the osmot-ic pressure equation is presented in this article. It is also pointed out that the definitions about the osmotic pressure in some domestic physical chemistry textbooks are not reasonable and the derivation of the osmotic pressure equation is not valid.
分 类 号:O6[理学—化学] G64[文化科学—高等教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179