检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南昌大学建筑工程学院,南昌330031 [2]徐州徐工随车起重机有限公司,江苏徐州221004 [3]江西省电力设计院,南昌330096
出 处:《科技通报》2015年第8期246-250,共5页Bulletin of Science and Technology
基 金:国家自然科学基金项目(11172122;51268043);江西省"赣鄱英才555工程"项目;江西省研究生创新专项资金项目(YC2013-B014);江西省自然基金项目(20144BAB2160009)
摘 要:以薄壁构件稳定理论为基础,研究角钢两肢夹角为θ对构件失稳力的影响,得到60度角钢临界屈曲荷载的表达式。采用有限元分析软件ANSYS进行数值仿真,对两肢夹角为θ的等边角钢进行特征值屈曲分析,将理论结果与有限元计算结果进行对比分析,验证了60度角钢临界屈曲荷载表达式的正确性。根据有限元计算结果与理论解对比分析的结果,可知当长细比λ给定时,角钢的临界失稳力随着两肢夹角θ会发生变化,当θ等于60度时,角钢的临界失稳力最大。Based on the theory of Stability for thin-walled members, studied the influence of two limb angle of steel angle is 0 to member buckling force, obtained the expression on the critical buckling load of 60 degrees steel angle. Took numerical simulation by using the finite element analysis software ANSYS and eigenvalue buckling analysis on equilateral steel angle whose two limb angle is 0. Compared the theoretical results with experimental results, the correctness of the express on the critical buckling load of 60 degrees steel angle is verified. Accorded to the comparative analysis of the calculation results with the theoretical results, when the slenderness ratio k is given, the critical buckling force will change with the two limb angle 0. When 0 is 60 degrees, the critical buckling force of steel angle is the largest.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117