分散液-液微萃取萃取剂分散策略的新进展  被引量:15

Progress of Extraction Solvent Dispersion Strategies for Dispersive Liquid-Liquid Microextraction

在线阅读下载全文

作  者:李明杰[1,2] 张红医[1,2] 刘晓哲[1,2] 崔春艳[1,2] 石志红[1,2] 

机构地区:[1]河北大学化学与环境科学学院,保定071002 [2]河北省分析科学技术重点实验室,保定071002

出  处:《分析化学》2015年第8期1231-1240,共10页Chinese Journal of Analytical Chemistry

基  金:国家自然科学基金项目(No.20875020);河北省自然科学基金(No.B2013201234)资助~~

摘  要:分散液-液微萃取(DLLME)是近年出现的一种绿色样品处理手段,微升级萃取剂在样品溶液中的分散是完成DLLME至关重要的一步。本文根据萃取剂分散所使用的仪器和依据的原理,将分散方法分为:(1)物理分散法,包括机械振荡法、超声波/微波辅助法以及溶解度调节法等;(2)原位化学反应法,包含原位生成萃取剂和生成有助于萃取剂分散的气体等方法;(3)新分散介质法,是以非挥发性物质(饱和脂肪酸、离子液体、表面活性剂和木棉纤维碎片等)代替常规DLLME中分散剂的一种新的DLLME模式。本文引用了96篇相关文献,并对未来的发展进行了展望。Dispersive liquid-liquid microextraction( DLLME) is a new sample preparation tool emerged recently. The dispersion of organic extraction solvent at micro-liter level in aqueous samples is the key step in DLLME. The strategies of dispersion for DLLME are roughly classified into three types in terms of the instruments used and their principles: physical dispersion method,in-situ chemical reaction-based dispersion method and new dispersion medium-based dispersion method. The physical dispersion method includes many submethods,such as mechanical shaking method,ultrasound / microwave-assisted method and solubility-adjustment method. The in-situ chemical reaction method is referred to the two modes: the dispersed extraction solvent is formed by in-situ chemical reaction or the dispersion of extraction solvent is caused by the gas generated from chemical reactions. The new dispersion medium-based dispersion method uses some non-volatile substances,such as medium-chain saturated fatty acids,ionic liquid,surfactant and kapok fiber fragments,to substitute the dispersive solvent used in conventional DLLME. 96 relevant literatures are cited here and the prospects are pointed out.

关 键 词:分散液-液微萃取 物理分散法 原位化学反应 非挥发性溶剂 综述 

分 类 号:O658.2[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象