检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黎高程 孟安波[2] 李超 李阳[2] 陈思哲[2]
机构地区:[1]广东电网有限责任公司茂名供电局,广东茂名525000 [2]广东工业大学,广州510006
出 处:《电测与仪表》2015年第15期67-73,共7页Electrical Measurement & Instrumentation
基 金:广东省自然科学基金资助项目(S2012040007895);广东省电网公司科技项目(K-GD2013-0789)
摘 要:文中提出一种多智能体量子粒子群优化算法(Multi Agent Quantum Particle Swam Optimization,MAQPSO)求解电力系统无功优化问题,改善了传统量子粒子群算法后期收敛速度慢、易陷入局部最优解等缺点。该算法结合了量子粒子群算法和多智能体进化思想,每一个Agent相当于量子粒子群优化算法中的一个粒子,通过Agent的邻域竞争、自学习等操作,使得算法能够更迅速、更精确地收敛到全局最优解。通过对IEEE14、30、57和118节点系统的优化仿真,结果表明该算法有收敛精度高、寻优速度快等优点。This paper proposed a novel quantum particle swam optimization algorithm based on multi agent system (MAQPSO) approach to solve the reactive power optimization. The algorithm overcomes the defects of conventional quantum particle swam optimization slow convergent speed and easy convergence to local minimum point of error function on later. This algorithm combined quantum particle swam optimization algorithm with multi-agent evolutionary thought. Every Agent serves as a particle of quantum particle swam, competition by the agent of the neighborhood and self-study, thus the algorithm can more quickly and accurately converge to global optimal solution. On the basis of the optimization simulation for IEEE14, 30, 57 and 118 nodes system, the results show that the algorithm has the advan- tages of high convergence precision and speed of optimization.
关 键 词:无功优化 多智能体系统(MAS) 量子粒子群算法(QPSO) 多智能体量子粒子群算法(MAQPSO)
分 类 号:TM933[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7