检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhiling Bai Baohua Ji
出 处:《Theoretical & Applied Mechanics Letters》2015年第4期146-150,共5页力学快报(英文版)
基 金:supported by the National Natural Science Foundation of China(11025208,11372042,and 11221202)
摘 要:Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.
关 键 词:Biological materials NANOSTRUCTURE Staggered arrangement Buckling behaviors Aspect ratio Composite materials
分 类 号:TB33[一般工业技术—材料科学与工程] TB383.1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.231.183