检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄雪锋 孙国刚[2] 张玉明[2] 朱喆 李涛[1]
机构地区:[1]中国石油西南油气田公司川中油气矿磨溪天然气净化一厂,四川遂宁629000 [2]中国石油大学(北京)化学工程学院,北京102249 [3]航天长征化学工程股份有限公司,北京102249
出 处:《化学反应工程与工艺》2015年第4期307-314,共8页Chemical Reaction Engineering and Technology
摘 要:利用搭建的湍球塔实验装置,考察了操作气速、静床高度、喷淋液量、支承网开孔率和湍球直径等参数对湍球塔床层压降和液相含率的影响特性;运用因次分析π定理和偏最小二乘法,得到了液相含率的回归模型。引入前人Gel和V-Noakovic模型,并基于文献实验数据对各模型预测效果作了对比分析。结果表明,偏最小二乘法处理小容量液相含率样本和自变量强相关问题行之有效,用液相含率新模型预测两组文献实验数据的均方百分比误差分别为2.5%和3.1%,预测的精确度优于Gel和V-Noakovic模型,且新模型适用范围更大。偏最小二乘法用于湍球塔床层液相含率预测建模切实可行。Hydrodynamics experiments were carried out in a pilot-scale turbulent contact absorber (TCA), and the effects of experimental parameters, such as operation gas velocity, static bed height, free open area of grid, ball diameter on bed pressure drop and liquid holdup were investigated. The liquid holdup regression model was presented using Buchingham π-theorem and partial least squares regression(PLSR) algorithm. Furthermore, the 2 liquid holdup models respectively proposed by Gel perin and V-Noakovic were cited, to compare with the new liquid holdup model. Then the 3 models were evaluated based on literature experimental data. The results showed that PLSR algorithm was effective in handling the samples with small capacity and variables with strong correlation. The accuracy and precision of the liquid holdup model by PLSR was better than those of the models cited from literature. By validating with 2 groups of experimental data in literature, the mean square errors(MSPE) of the new liquid holdup model were 2.5% and 3.1%, respectively. The accuracy and precision of predicting liquid holdup was better than those of Gel perin's and V-Noakovic's models, which indicated that the partial least-squares regression algorithm to predict TCA bed liquid holdup was feasible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222