基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演  被引量:26

Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines

在线阅读下载全文

作  者:谭琨[1] 张倩倩[1] 曹茜[1] 杜培军[2] 

机构地区:[1]中国矿业大学江苏省资源环境信息工程重点实验室,江苏徐州221116 [2]南京大学卫星测绘技术与应用国家测绘地理信息局重点实验室,江苏南京210023

出  处:《地球科学(中国地质大学学报)》2015年第8期1339-1345,共7页Earth Science-Journal of China University of Geosciences

基  金:国家自然科学基金项目(Nos.41471356;41402293);卫星测绘技术与应用测绘地理信息局重点实验室项目(No.KLAMTA-201410);国家高技术研究发展计划(863计划)项目(Nos.2008AA121100;2012AA12A308)

摘  要:为了监测复垦矿区土壤的有机质含量,综合利用光谱分析、统计学习理论与方法以及智能优化理论与方法,研究了矿区复垦土壤有机质含量与土壤光谱之间的关系,在此基础上建立了土壤有机质含量高光谱反演模型,实现土壤有机质含量定量检测.首先对原始土壤光谱数据进行预处理,然后进行相关性分析,提取450nm、500nm、650nm、770nm、1 460nm和2 140nm作为特征波段,最后利用多元线性回归(multiple linear regression,MLR)、偏最小乘回归(partial least squares regression,PLSR)和粒子群优化支持向量机回归(particle swarm optimization support vector machine regression,PSO-SVM)方法建立了土壤有机质含量的高光谱定量反演模型,并对模型进行验证.3种模型的验证结果如下:MLR、PLSR和PSO-SVM模型的R2分别为0.79、0.83和0.85,RMSE分别为5.26、4.93和4.76.实验结果表明,无论从模型的稳定性还是预测能力上,PSOSVM都要优于其他两个模型.To monitor the soil organic matter in the reclamation area of coal mines, the relationship between soil organic matter content and soil spectra in the reclamation area of coal mines was studied, and a quantitative retrieval model was established and validated in order to implement the organic matter content detection in this paper. After the preprocessing of the original spectral, the correlation of the organic matter content and reflectance spectra was analyzed, and 450 nm, 500 nm, 650 nm, 770 nm, 1 460 nm and 2 140 nm wavelength were extracted as feature bands. Using the multiple linear regression (MLR), partial least squares regression (PLSR) and particle swarm optimization support vector machine regression (PSO-SVM) methods, the hyperspectral quantitative retrieval models for soil organic matter content were built. The results show the coefficient of determination (Re) of MLR, PLSR and PSO-SVM were 0.79, 0.83 and 0.85 respectively, and the root mean square error of prediction (RMSEP) were 5.26, 4.93 and 4.76 respectively. The results demonstrate that the stability and predictive ability of PSO-SVM model are better than those of the MLR and PLSR model.

关 键 词:土壤有机质 高光谱 遥感 粒子群优化支持向量机 粒子群算法. 

分 类 号:X87[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象