Extraction of Lithium from Salt Lake Brine with Triisobutyl Phosphate in Ionic Liquid and Kerosene  被引量:10

Extraction of Lithium from Salt Lake Brine with Triisobutyl Phosphate in Ionic Liquid and Kerosene

在线阅读下载全文

作  者:GAO Daolin YU Xiaoping GUO Yafei WANG Shiqiang LIU Mingming DENG Tianlong CHEN Yuwei BELZILE Nelson 

机构地区:[1]Tianfin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Material Science, Tianfin University of Science and Technology, Tianfin 300457, P. R. China [2]Department of Chemistry & Biochemistry, Laurentian University, Sudbury P3E2C6, Canada

出  处:《Chemical Research in Chinese Universities》2015年第4期621-626,共6页高等学校化学研究(英文版)

基  金:Supported by the National Natural Science Foundation of China(Nos.21276194, U1407113), the Training Program for Changjiang Scholars and Innovative Research Team in University, China(No.[2013]373) and the Innovative Research Team of Tianjin Municipal Education Commission, China(No.TD12-5004).

摘  要:Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fonyl]imide with the triisobutyl phosphate(TIBP) and kerosene system were respectively used to extract lithium ion from salt lake brine with a high concentration ratio of magnesium and lithium experimentally. Results indicate that the highest extraction selectivity for lithium was obtained with IL 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)- sulfonyl]imide. The effects of solution pH and phase ratio R(O/A) on the extractive step and the influence of acid concentration of the stripping solution and R(O/A) on the back extraction step were also investigated systematically. The single-step extraction efficiency of lithium ion was 83.71% under the optimal extraction conditions, and the single-step back extraction efficiency was 85.61% with a 1.0 mol/L HCI in 1.0 mol/L NaCI medium as stripping agent at R(O/A)=2. The liquid-liquid extraction mechanism and the complex of the ligand with lithium were proposed.Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fonyl]imide with the triisobutyl phosphate(TIBP) and kerosene system were respectively used to extract lithium ion from salt lake brine with a high concentration ratio of magnesium and lithium experimentally. Results indicate that the highest extraction selectivity for lithium was obtained with IL 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)- sulfonyl]imide. The effects of solution pH and phase ratio R(O/A) on the extractive step and the influence of acid concentration of the stripping solution and R(O/A) on the back extraction step were also investigated systematically. The single-step extraction efficiency of lithium ion was 83.71% under the optimal extraction conditions, and the single-step back extraction efficiency was 85.61% with a 1.0 mol/L HCI in 1.0 mol/L NaCI medium as stripping agent at R(O/A)=2. The liquid-liquid extraction mechanism and the complex of the ligand with lithium were proposed.

关 键 词:Ionic liquid Triisobutyl phosphate EXTRACTION LITHIUM Salt lake brine 

分 类 号:TQ265.11[化学工程—有机化工] TF826.3[冶金工程—有色金属冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象