出 处:《Journal of Integrative Agriculture》2015年第8期1534-1541,共8页农业科学学报(英文版)
基 金:supported by the National Basic Research Program of China(973 Program,2010CB951502);the Special Fund for Agro-Scientific Research in the Public Interest in China(201103001)
摘 要:Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon(C) emissions.This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn(Zea mays L.).A field experiment, including 0(N0), 75(N75), 150(N150), 225(N225), and 300(N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain(NCP).The results showed that grain yield, input energy, greenhouse gas(GHG) emissions, and carbon footprint(CF) were all increased with the increase of N rate, except net energy yield(NEY).The treatment of N225 had the highest grain yield(10 364.7 kg ha–1) and NEY(6.8%), but the CF(0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP.Comparing GHG emision compontents, N fertilizer(0–51.1%) was the highest and followed by electricity for irrigation(19.73–49.35%).We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efficiency and decrease GHG emissions in corn production.Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon(C) emissions.This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn(Zea mays L.).A field experiment, including 0(N0), 75(N75), 150(N150), 225(N225), and 300(N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain(NCP).The results showed that grain yield, input energy, greenhouse gas(GHG) emissions, and carbon footprint(CF) were all increased with the increase of N rate, except net energy yield(NEY).The treatment of N225 had the highest grain yield(10 364.7 kg ha–1) and NEY(6.8%), but the CF(0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP.Comparing GHG emision compontents, N fertilizer(0–51.1%) was the highest and followed by electricity for irrigation(19.73–49.35%).We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efficiency and decrease GHG emissions in corn production.
关 键 词:MAIZE nitrogen fertilizer rate grain yield net energy ratio greenhouse gas emissions
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...