机构地区:[1]State Key Laboratory for Structural Chemistry of Unstable and Stable Species [2]Beijing National Laboratory for Molecular Sciences [3]Institute of Chemistry, Chinese Academy of Sciences [4]Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences [5]Institute of Urban Meteorology,China Meteorological Administration
出 处:《Science China Chemistry》2015年第9期1393-1402,共10页中国科学(化学英文版)
基 金:supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB05010400);the Key Research Program of Chinese Academy of Sciences(KJZD-EW-TZ-G06-01);the National Natural Science Foundation of China(41475114)
摘 要:To study the HONO formation mechanisms during a pollution period, a continuous measurement was performed in both urban and suburban aeras of Beijing. During this period, the PM2.5 concentrations increased to 201 and 137 ?g/m3 in urban and suburban areas, respectively. The concentrations of HONO, CO, SO2, O3, NO, NO2, NOx were 1.45 ppbv, 0.61 ppmv, 8.7 ppbv, 4.3 ppbv, 44.4 ppbv, 37.4 ppbv, 79.4 ppbv and 0.72 ppbv, 1.00 ppmv, 1.2 ppbv, 7.9 ppbv, 3.7 ppbv, 8.2 ppbv, 11.9 ppbv, in urban and suburban areas, respectively. To compare possible pathways of HONO formation in both sites, the contributions of direct emissions, heterogeneous formations, and homogeneous productions were studied. HONO/NO2 ratios in the two sites indicated that heterogeneous reactions of NO2 were more efficient in suburban areas. And in both urban and suburban areas, the increase of PM2.5 concentrations and RH would promote the conversion efficiency in RH that ranged from 0% to 85%. However, when RH was above 85%, the HONO formation slowed down. Moreover, the study of direct emissions and homogeneous reactions showed that they contributed to a majority of HONO increase in urban areas than the 20% contributions in suburban areas. It implied that the high NOx concentrations and NO concentrations in urban areas or in pollution periods would make direct emissions and homogeneous reactions become dominant in HONO formations.To study the HONO formation mechanisms during a pollution period, a continuous measurement was performed in both urban and suburban aeras of Beijing. During this period, the PM2.5 concentrations increased to 201 and 137 ?g/m3 in urban and suburban areas, respectively. The concentrations of HONO, CO, SO2, O3, NO, NO2, NOx were 1.45 ppbv, 0.61 ppmv, 8.7 ppbv, 4.3 ppbv, 44.4 ppbv, 37.4 ppbv, 79.4 ppbv and 0.72 ppbv, 1.00 ppmv, 1.2 ppbv, 7.9 ppbv, 3.7 ppbv, 8.2 ppbv, 11.9 ppbv, in urban and suburban areas, respectively. To compare possible pathways of HONO formation in both sites, the contributions of direct emissions, heterogeneous formations, and homogeneous productions were studied. HONO/NO2 ratios in the two sites indicated that heterogeneous reactions of NO2 were more efficient in suburban areas. And in both urban and suburban areas, the increase of PM2.5 concentrations and RH would promote the conversion efficiency in RH that ranged from 0% to 85%. However, when RH was above 85%, the HONO formation slowed down. Moreover, the study of direct emissions and homogeneous reactions showed that they contributed to a majority of HONO increase in urban areas than the 20% contributions in suburban areas. It implied that the high NOx concentrations and NO concentrations in urban areas or in pollution periods would make direct emissions and homogeneous reactions become dominant in HONO formations.
关 键 词:nitrous acid POLLUTION URBAN SUBURBAN comparison
分 类 号:X511[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...