检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wei Wang Yanchun Li Zhongyuan Lu
机构地区:[1]State Key Laboratory of Supramolecular Structure and Materials [2]Institute of Theoretical Chemistry, Jilin University
出 处:《Science China Chemistry》2015年第9期1471-1477,共7页中国科学(化学英文版)
基 金:supported by the National Basic Research Program of China(2012CB821500);the National Natural Science Foundation of China(21025416);Jilin Province Science and Technology Development Plan(20140519004JH)
摘 要:In this paper, we present the coil-to-globule(CG) transitions of homopolymers and multiblock copolymers with different topology and stiffness by using molecular dynamics with integrated tempering sampling method. The sampling method was a novel enhanced method that efficiently sampled the energy space with low computational costs. The method proved to be efficient and precise to study the structural transitions of polymer chains with complex topological constraint, which may not be easily done by using conventional Monte Carlo method. The topological constraint affects the globule shape of the polymer chain, thus further influencing the CG transition. We found that increasing the topological constraint generally decreased CG transition temperature for homopolymers. For semiflexible chains, an additional first-order like symmetry-broken transition emerged. For block copolymers, the topological constraint did not obviously change the transition temperature, but greatly reduced the energy signal of the CG transition.In this paper, we present the coil-to-globule(CG) transitions of homopolymers and multiblock copolymers with different topology and stiffness by using molecular dynamics with integrated tempering sampling method. The sampling method was a novel enhanced method that efficiently sampled the energy space with low computational costs. The method proved to be efficient and precise to study the structural transitions of polymer chains with complex topological constraint, which may not be easily done by using conventional Monte Carlo method. The topological constraint affects the globule shape of the polymer chain, thus further influencing the CG transition. We found that increasing the topological constraint generally decreased CG transition temperature for homopolymers. For semiflexible chains, an additional first-order like symmetry-broken transition emerged. For block copolymers, the topological constraint did not obviously change the transition temperature, but greatly reduced the energy signal of the CG transition.
关 键 词:coil-to-globule transition topological constraint chain stiffness molecular dynamics
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15