出 处:《Chinese Physics Letters》2015年第7期160-163,共4页中国物理快报(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant No 11274402;the National Basic Research Program of China under Grant No 2012CB933704;the Natural Science Foundation of Guangdong Province under Grant No S2012020011003;the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT13042
摘 要:We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigation on these devices. Compared with OLEDs with only MoO3 HIL or MoO3 doped HTL, OLEDs with both MoO3 HIL and MoO3 doped HTL show superior performance in driving voltage, power efficiency, and stability. Based on the typical NPB/Alq3 heterojunction structure, OLEDs with both MoO3 HIL and MoO3 doped HTL show a driving voltage of 5.4 V and a power efficiency of 1.41 lm/W for 1000 cd/m2, and a lifetime of around 0. 88 h with an initial luminance of 5268 cd/m2 under a constant current of 190 mA/cm2 operation in air without encapsulation. While OLEDs with only MoO3 HIL or MoO3 doped HTL show higher driving voltages of 6.4 V or 5.8 V and lower power efficiencies of 1.201m/W or 1.341m/W for 1000cd/m2, and a shorter lifetime of 0.33 or 0.60h with an initial luminance of around 5122 or 5300cd/m2 under a constant current of 200 or 216mA/cm2 operation. Our results demonstrate clearly that using both MoO3 HIL and MoO3 doped HTL is a simple and effective approach to simultaneoasly improve both the hole injection and transport efficiency, resulting from the lowered energy barrier at the anode interface and the increased hole carrier density in MoO3 doped HTL.We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigation on these devices. Compared with OLEDs with only MoO3 HIL or MoO3 doped HTL, OLEDs with both MoO3 HIL and MoO3 doped HTL show superior performance in driving voltage, power efficiency, and stability. Based on the typical NPB/Alq3 heterojunction structure, OLEDs with both MoO3 HIL and MoO3 doped HTL show a driving voltage of 5.4 V and a power efficiency of 1.41 lm/W for 1000 cd/m2, and a lifetime of around 0. 88 h with an initial luminance of 5268 cd/m2 under a constant current of 190 mA/cm2 operation in air without encapsulation. While OLEDs with only MoO3 HIL or MoO3 doped HTL show higher driving voltages of 6.4 V or 5.8 V and lower power efficiencies of 1.201m/W or 1.341m/W for 1000cd/m2, and a shorter lifetime of 0.33 or 0.60h with an initial luminance of around 5122 or 5300cd/m2 under a constant current of 200 or 216mA/cm2 operation. Our results demonstrate clearly that using both MoO3 HIL and MoO3 doped HTL is a simple and effective approach to simultaneoasly improve both the hole injection and transport efficiency, resulting from the lowered energy barrier at the anode interface and the increased hole carrier density in MoO3 doped HTL.
关 键 词:NPB HTL HIL OLEDs Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer
分 类 号:TN383.1[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...