ReaxFF molecular dynamics study on oxidation behavior of 3C-SiC:Polar face effects  被引量:1

ReaxFF molecular dynamics study on oxidation behavior of 3C-SiC:Polar face effects

在线阅读下载全文

作  者:孙瑜 刘轶军 徐绯 

机构地区:[1]Institute for Computational Mechanics and Its Applications,Northwestern Polytechnical University [2]Mechanical Engineering,University of Cincinnati

出  处:《Chinese Physics B》2015年第9期381-386,共6页中国物理B(英文版)

基  金:Project supported by the 111 Project(Grant No.B07050);the National Natural Science Foundation of China(Grant No.11402206)

摘  要:The oxidation of nanoscale 3C-SiC involving four polar faces(C(100), Si(100), C(111), and Si(111)) is studied by means of a reactive force field molecular dynamics(Reax FF MD) simulation. It is shown that the consistency of 3C-SiC structure is broken over 2000 K and the low-density carbon chains are formed within SiC slab. By analyzing the oxygen concentration and fitting to rate theory, activation barriers for C(100), Si(100), C(111), and Si(111) are found to be 30.1,35.6, 29.9, and 33.4 k J·mol^-1. These results reflect lower oxidative stability of C-terminated face, especially along [111] direction. Compared with hexagonal polytypes of SiC, cubic phase may be more energy-favorable to be oxidized under high temperature, indicating polytype effect on SiC oxidation behavior.The oxidation of nanoscale 3C-SiC involving four polar faces(C(100), Si(100), C(111), and Si(111)) is studied by means of a reactive force field molecular dynamics(Reax FF MD) simulation. It is shown that the consistency of 3C-SiC structure is broken over 2000 K and the low-density carbon chains are formed within SiC slab. By analyzing the oxygen concentration and fitting to rate theory, activation barriers for C(100), Si(100), C(111), and Si(111) are found to be 30.1,35.6, 29.9, and 33.4 k J·mol^-1. These results reflect lower oxidative stability of C-terminated face, especially along [111] direction. Compared with hexagonal polytypes of SiC, cubic phase may be more energy-favorable to be oxidized under high temperature, indicating polytype effect on SiC oxidation behavior.

关 键 词:molecular dynamics Reax FF field 3C-SIC oxidation 

分 类 号:O561[理学—原子与分子物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象