求解约束优化问题的改进灰狼优化算法  被引量:67

Improved grey wolf optimization algorithm for constrained optimization problem

在线阅读下载全文

作  者:龙文[1] 赵东泉[2] 徐松金[3] 

机构地区:[1]贵州省经济系统仿真重点实验室(贵州财经大学),贵阳550004 [2]枣庄科技职业学院机械工程系,山东滕州277500 [3]铜仁学院数学科学学院,贵州铜仁554300

出  处:《计算机应用》2015年第9期2590-2595,共6页journal of Computer Applications

基  金:国家自然科学基金资助项目(61463009);贵州省科学技术基金资助项目(黔科合J字[2013]2082号);贵州省高校优秀科技创新人才支持计划项目(黔教合KY字[2013]140)

摘  要:针对基本灰狼优化(GWO)算法存在求解精度低、收敛速度慢、局部搜索能力差的问题,提出一种改进灰狼优化(IGWO)算法用于求解约束优化问题。该算法采用非固定多段映射罚函数法处理约束条件,将原约束优化问题转化为无约束优化问题,然后利用IGWO算法对转换后的无约束优化问题进行求解。在IGWO算法中,引入佳点集理论生成初始种群,为算法全局搜索奠定基础;为了提高局部搜索能力和加快收敛,对当前最优灰狼个体执行Powell局部搜索。采用几个标准约束优化测试问题进行仿真实验,结果表明该算法不仅克服了基本GWO的缺点,而且性能优于差分进化和粒子群优化算法。The standard Grey Wolf Optimization (GWO) algorithm has a few disadvantages of low solving precision, slow convergence, and bad local searching ability. In order to overcome these disadvantages of GWO, an Improved GWO (IGWO) algorithm was proposed to solve constrained optimization problems. Using non-stationary multi-stage assignment penalty function method to deal with the constrained conditions, the original constrained optimization problem was converted into an unconstrained optimization problem. The proposed IGWO algorithm was applied to solve the converted problem. In proposed IGWO algorithm, good point set theory was used to initiate population, which strengthened the diversity of global searching. PoweU search method was applied to the current optimal individual to improve local search ability and accelerate convergence. Simulation experiments were conducted on the well-known benchmark constrained optimization problems. The simulation results show that the proposed algorithm not only overcomes shortcomings of the original GWO algorithm, but also outperforms differential evolution and particle swarm optimization algorithms.

关 键 词:灰狼优化算法 约束优化 非固定多段映射罚函数法 佳点集 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象