检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《油气储运》2015年第8期829-833,共5页Oil & Gas Storage and Transportation
摘 要:稠油掺稀后混合油黏度的准确计算是稠油地面设施及管道工艺计算的基础,为了研究高黏度比(大于1×104)对于混合油黏度预测准确性的影响,首先筛选6个较为常用的混合油黏度计算模型,通过Capella稠油与4种不同物性稀油的现场掺稀测试,对38组共114个混合油黏度实测值和模型预测值进行对比,使用误差分析方法讨论了稠稀油黏度比对不同模型预测准确性的影响。研究表明:黏度比小于3 000时,Cragoe修正模型预测平均误差小于10%;黏度比大于3 000时,推荐采用Lederer改进模型,平均预测误差小于15%;黏度比对于混合油黏度模型预测误差的影响不可忽略,如需对现有模型进行修正,则应在修正式中引入黏度比。Accurate calculation of mixed oil viscosity after heavy oil is mixed with light oil is essential for calculation of heavy oil surface facility and pipelining process. In order to analyze the effect of high viscosity ratio(104) on prediction accuracy of mixed oil viscosity, 6 common calculation models of mixed oil viscosity are fi rstly selected. After Capella heavy oil is mixed with 4 types of light oil with different physical properties, 38 groups(including 114 mixtures) are tested and their measured viscosity and model prediction value are compared. Error analysis method is adopted to identify the effect of heavy-light oil viscosity ratio on prediction accuracy of different models. It is indicated that Cragoe correction model presents stable prediction error, averaging less than 10%, when viscosity ratio is less than 3 000. When viscosity ratio is more than 3 000, it is recommended to adopt Lederer improved model whose average prediction error is less than 15%. Attention shall be paid to the effect of mixed oil viscosity ratio on viscosity prediction errors of mixed oil viscosity models. It is strongly suggested to introduce viscosity ratio into correction formula when the existing models are to be corrected.
关 键 词:混合油黏度 黏度比 稠油掺稀 模型误差分析 Lederer改进模型
分 类 号:TE53[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117