基于改进TV-ART的变电压CT重建算法  

An Improved TV-ART CT Reconstructive Algorithm Based on Variable Voltage

在线阅读下载全文

作  者:李权[1] 潘晋孝[1] 

机构地区:[1]中北大学信息探测与处理山西省重点实验室,山西太原030051

出  处:《青岛科技大学学报(自然科学版)》2015年第4期468-472,共5页Journal of Qingdao University of Science and Technology:Natural Science Edition

基  金:国家自然科学基金项目(61171179;61227003;61301259);山西省自然科学基金项目(2012021011-2);高等学校博士学科点专项科研基金项目(20121420110006);山西省回国留学人员科研资助项目(2013-083)

摘  要:常规固定电压的CT重建,因成像系统动态范围受限,投影数据易出现过曝光和欠曝光共存现象,信息缺失,成像质量差,为此提出变电压CT重建。针对变电压CT中的不完全投影数据重建问题,提出了基于改进TV-ART的变电压CT重建算法。该算法在改进TV-ART的基础上,依据灰度加权,把前一电压的重建图像作为初值应用到下一电压重建中,直至最高电压,实现有效投影信息的全部重建,完整地再现复杂结构件的内部结构信息。实验结果表明,跟直接利用传统TV-ART重建算法相比,本研究提出的算法不仅实现了变电压图像信息的完整重建,像素值也更加稳定。In conventional CT reconstruction based on fixed voltage,the projection data often appears overexposed or underexposed. This is because the variations in the effective thickness of the component along the orientation of the X-ray penetration exceed the limit of the dynamic range of the X-ray imaging system. Complete structural information cannot be reconstructed. To solve this problem, variable voltage CT reconstruction has advanced. With the incomplete projection data of variable voltage CT reconstruction problem, the variable voltage CT reconstruction algorithm based on improved gray weight is proposed. In this new method, the previous voltagers reconstruction image is used as a initial value of the next voltagers reconstruction until to the highest voltage according to the gray weighted algorithm and improved TV-ART algorithm. That is to say the full projection information is reconstructed. Finally, experiment shows that, with the traditional TV-ART algorithm directly,the proposed algorithm can completely reflect the information of a complicated structural component, and the pixel values are more stable.

关 键 词:变电压CT重建 TV—ART算法 灰度加权 有效投影 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象