Optimal Recovery of Functions on the Sphere on a Sobolev Spaces with a Gaussian Measure in the Average Case Setting  

Optimal Recovery of Functions on the Sphere on a Sobolev Spaces with a Gaussian Measure in the Average Case Setting

在线阅读下载全文

作  者:Zexia Huang Heping Wang 

机构地区:[1]School of Mathematical Sciences, Capital Normal University [2]School of Science, Xihua University

出  处:《Analysis in Theory and Applications》2015年第2期154-166,共13页分析理论与应用(英文刊)

基  金:supported by the National Natural Science Foundation of China(No.11426179);the National Natural Science Foundation of China(Nos.10871132,11271263);the Key Scientific Research Fund of Xihua University(No.z1312624);the Foundation of Sichuan Educational Committee(No.14ZA0112);the Preeminent Youth Fund for School of Science in Xihua University;the Beijing Natural Science Foundation(No.1132001);BCMIIS

摘  要:In this paper, we study optimal recovery (reconstruction) of functions on the sphere in the average case setting. We obtain the asymptotic orders of average sampling numbers of a Sobolev space on the sphere with a Gaussian measure in the Lq (S^d-1) metric for 1 ≤ q ≤ ∞, and show that some worst-case asymptotically optimal algorithms are also asymptotically optimal in the average case setting in the Lq (S^d-1) metric for 1 ≤ q ≤ ∞.In this paper, we study optimal recovery (reconstruction) of functions on the sphere in the average case setting. We obtain the asymptotic orders of average sampling numbers of a Sobolev space on the sphere with a Gaussian measure in the Lq (S^d-1) metric for 1 ≤ q ≤ ∞, and show that some worst-case asymptotically optimal algorithms are also asymptotically optimal in the average case setting in the Lq (S^d-1) metric for 1 ≤ q ≤ ∞.

关 键 词:Optimal recovery on the sphere average sampling numbers optimal algorithm Gaussian measure. 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象