基于平均中值离差的2维最小误差阈值分割法  被引量:7

2-D minimum error threshold segmentation method based on mean absolute deviation from the median

在线阅读下载全文

作  者:宋斌[1] 杨恢先[1] 曾金芳[1] 谭正华[2] 李翠菊[1] 

机构地区:[1]湘潭大学物理与光电工程学院,湘潭411105 [2]湘潭大学信息工程学院,湘潭411105

出  处:《激光技术》2015年第5期717-722,共6页Laser Technology

基  金:湖南省自然科学基金资助项目(14JJ0077);湖南省教育厅高校科研经费资助项目(13C917;13C931)

摘  要:为了解决2维最小误差阈值分割法对呈偏斜分布与重尾分布的图像分割鲁棒性较差的问题,提出一种基于平均中值离差的2维最小误差阈值分割法。考虑到1维直方图呈偏斜分布和重尾分布的图像中,中值是比均值更为鲁棒的灰度级估计量,因而将2维最小误差阈值分割法中的方差用平均中值离差替代;为提高运算速度,将2维算法分解为2个1维算法。结果表明,相比2维Otsu法、2维最小误差阈值分割法等经典算法,基于平均中值离差的2维最小误差阈值分割法对1维直方图呈偏斜分布与重尾分布的图像有更准确的分割效果、更好的鲁棒性。In order to solve the problem that 2-D minimum error threshold segmentation( METS) method had poor segment robust performance on an image which presents skew distribution and heavy-tailed distribution,an improved 2-D METS method was proposed based on mean absolute deviation from the median. Considering that the median was a more robust estimator of gray level than the mean in 1-D histogram of skew distribution and heavy-tailed distribution,variance in 2-D METS was replaced by mean absolute deviation from the median. In order to improve the computational speed,a 2-D algorithm was decomposed into two1-D algorithms. Experimental results show that,compared with 2-D Otsu method,2-D METS method and other classical algorithms,the improved 2-D METS method based on mean absolute deviation has more accurate segmentation results and more robust performance for 1-D histogram with skew distribution and heavy-tailed distribution.

关 键 词:图像处理 最小误差阈值法 平均中值离差 分解 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象