Enhancing the water-resistance stability of CaS:Eu^(2+),Sm^(2+) phosphor with SiO_2-PMMA composite coating  

Enhancing the water-resistance stability of CaS:Eu^(2+),Sm^(2+) phosphor with SiO_2-PMMA composite coating

在线阅读下载全文

作  者:张杰强 范艳伟 陈朝阳 闫世友 王军华 赵鹏君 郝斌 盖敏强 

机构地区:[1]Key Laboratory of Functional Materials and Devices under Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences [2]University of Chinese Academy of Sciences

出  处:《Journal of Rare Earths》2015年第9期922-926,共5页稀土学报(英文版)

基  金:supported by National Natural Science Foundation of China(11305260)

摘  要:This work was aimed at improving the water-resistance stability of CaS:Eu2+,Sm2+ phosphor. An organic-inorganic com- posite coating method was adopted in order to obtain ideal phosphor. The phosphor was coated with SiO2 via sol-gel technique and it was also covered by polymethyl methacrylate (PMMA) via dissolution-cohesion technique. Powder X-ray diffraction (XRD) patterns, fluorescence spectroscopy and transmission electron microscopy (TEM) were employed to characterize the phase structures, emission spectrum and surface morphologies, respectively. In addition, the water-resistance stability of the phosphor was tested by soaking the phosphor into deionized water. The results showed that the phase structures remained the same as the uncoated phosphor and the po- sition of the fluorescence peak did not shift after surface treatment. Results showed that the water-resistance stability of the phosphor was improved to some degree. Moreover, the photoluminescence (PL) intensity of the coated phosphors reduced less than 10% of the original phosphors. Though being soaked into deionized water for 50 h, the phosphor coated with 10 wt.%SiO2-10 wt.%PMMA retained 85.9% PL intensity compared to that of the uncoated phosphor. Therefore, it could be concluded that the 10 wt.%SiO2-10 wt.%PMMA composite coating effectively improved the phosphor water resistance and retained its good optical properties.This work was aimed at improving the water-resistance stability of CaS:Eu2+,Sm2+ phosphor. An organic-inorganic com- posite coating method was adopted in order to obtain ideal phosphor. The phosphor was coated with SiO2 via sol-gel technique and it was also covered by polymethyl methacrylate (PMMA) via dissolution-cohesion technique. Powder X-ray diffraction (XRD) patterns, fluorescence spectroscopy and transmission electron microscopy (TEM) were employed to characterize the phase structures, emission spectrum and surface morphologies, respectively. In addition, the water-resistance stability of the phosphor was tested by soaking the phosphor into deionized water. The results showed that the phase structures remained the same as the uncoated phosphor and the po- sition of the fluorescence peak did not shift after surface treatment. Results showed that the water-resistance stability of the phosphor was improved to some degree. Moreover, the photoluminescence (PL) intensity of the coated phosphors reduced less than 10% of the original phosphors. Though being soaked into deionized water for 50 h, the phosphor coated with 10 wt.%SiO2-10 wt.%PMMA retained 85.9% PL intensity compared to that of the uncoated phosphor. Therefore, it could be concluded that the 10 wt.%SiO2-10 wt.%PMMA composite coating effectively improved the phosphor water resistance and retained its good optical properties.

关 键 词:2+ 2+CaS:Eu  Sin2+ redphosphor SlO2-PMMAcompositecoating photouminescence pHvaoue water-resistancestabioity RAREEARTHS 

分 类 号:TB306[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象