机构地区:[1]State Key Laboratory of Automotive Safety and Energy,Tsinghua University [2]Department of Engineering Mechanics, School of Aerospace,Tsinghua University
出 处:《Science Bulletin》2015年第16期1457-1460,共4页科学通报(英文版)
基 金:supported by the National Natural Science Foundation of China(51176087)
摘 要:Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure of hind wings, which occurs under the stiff elytra after flight, still remains unknown. In this paper, the wing folding process and the surficial microstructures of elytra, hind wing and abdomen are investigated by video recording and scanning electron microscopy. The results show that there are hooklike protrusions approximately 15 μm in length distributing on the inner side of elytra, and bump-like protrusions on the hind wings. The 'hooks' may anchor the 'bumps' on the main wing to prevent corrugation during folding. The horizontal protrusions observed on the abdomen shape a hairy cuticle, which is conducive to a better wing-abdomen interaction. Thus, the ratcheting mechanism that wing folding facilitated by micro-protrusions on the body surface is revealed. This new finding helps us to further understand the functions of diversely shaped protrusions in the physiology of insects. More importantly, the ratcheting mechanism could serve as a cuticle interaction model and inspire new engineering applications, such as microsystems.Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure of hind wings, which occurs under the stiff elytra after flight, still remains unknown. In this paper, the wing folding process and the surficial microstructures of elytra, hind wing and abdomen are investigated by video recording and scanning electron microscopy. The results show that there are hooklike protrusions approximately 15 lm in length distributing on the inner side of elytra, and bump-like protrusions on the hind wings. The ‘hooks' may anchor the ‘bumps' on the main wing to prevent corrugation during folding. The horizontal protrusions observed on the abdomen shape a hairy cuticle, which is conducive to a better wing-abdomen interaction. Thus, the ratcheting mechanism that wing folding facilitated by micro-protrusions on the body surface is revealed. This new finding helps us to further understand the functions of diversely shaped protrusions in the physiology of insects. More importantly, the ratcheting mechanism could serve as a cuticle interaction model and inspire new engineering applications, such as microsystems.
关 键 词:Beetle - Brushing movement Wing folding - Bio-surface Microstructure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...