检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]晋中职业技术学院基础部,山西晋中030600 [2]中国石油大学(北京)信息学院,北京102249
出 处:《实验科学与技术》2015年第4期16-18,91,共4页Experiment Science and Technology
摘 要:用Wang的Obrechkoff数值方法来求解常见的Schrdinger方程,即两步高阶微商。该方法的特点是采用增加奇数高阶微商使得数值结果 P稳定。Schrdinger方程中,例如一维的Woods-Saxon势和Pschl-Teller势,使用该方法计算后,不仅提高了计算效率,也提高了数值结果的精度。In this paper,we focus on the new kind of P-stable two-step Obrechkoff method for the ultra-high-accurate solution of a one-dimensional Schrdinger equation. Through improving the Wang's method,we develop a new kind of P-stable two-step Obrechkoff method by adding the odd higher-order derivatives. This proposed method is very effective but has very high local truncation error. We apply our new method to the one-dimensional Schrdinger equation such as the well-know Woods-Saxon potential and Pschl-Teller potential. Their numerical solution testified that the new method is very reliability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.10.218