检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]淮海工学院测绘工程学院,江苏连云港222005 [2]盐城师范学院城市与资源环境学院,江苏盐城224002
出 处:《海洋科学》2015年第6期122-128,共7页Marine Sciences
基 金:国家自然科学基金项目(41306077);淮海工学院自然科学基金项目(Z2014017)
摘 要:以废黄河三角洲表层粒度分析数据为基础,探讨了对数比转换和kriging插值相结合方法在沉积物粒级组分空间预测和底质类型制图中的应用。结果表明,基于沉积物粒级组分原始数据的kriging预测方法难以保证各组分预测结果的非负和定和要求,因而预测结果的可信度低;而对数比转换kriging方法不但满足非负和定和要求,而且还有着更优的组分预测结果和较高的底质类型制图精度。新方法对于开展定量化的沉积物粒级组分预测和底质类型制图具有参考价值。The sediment grain size data are compositional data and are characterized by non-negative and constant sum. In spatial prediction of grain size compositions, one important aspect of the prediction quality is whether the prediction results meet the requirements of non-negative and constant sum, which is also the essential condition for sediment type recognition and mapping. In this paper, the grain size data obtained from the abandoned Yellow River Estuary are taken as an example to discuss the application of combined logratio transform and ordinary kriging in spatial prediction of grain size compositions and sediment type mapping. Results show that the kriging interpolation results by directly using the grain size data are unreliable owing to their dissatisfaction of non-negative and constant sum, while the prediction results obtained using the logratio-transformed grain size data and kriging interpolation method not only meet those two requirements, but also have a better prediction accuracy of grain size compositions and a relative high sediment type mapping precision. So the new method of combined logratio transform and ordi- nary kriging has reference value for quantitative sediment mapping.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117