基于群代理的QoS-AP算法优化QoS组播路由  被引量:1

OPTIMISING MULTICAST ROUTING OF QOS WITH SWARMING AGENT-BASED QOS-AP

在线阅读下载全文

作  者:李睿[1] 余勇[2] 

机构地区:[1]阿坝师范高等专科学校网络管理中心,四川汶川623002 [2]河南经贸职业学院信息管理系,河南郑州450053

出  处:《计算机应用与软件》2015年第9期127-130,140,共5页Computer Applications and Software

基  金:四川省教育厅重点课题(13ZA0038)

摘  要:针对互联网组播应用中多约束服务质量(QoS)组播路由优化问题,提出一种基于群代理的融合蚁群(ACO)算法与粒子群优化(PSO)算法的QoS-AP算法。首先根据QoS约束,产生多个组播模型。然后利用ACO算法对每个模型和模型中的属性进行评估并放置信息素。再根据信息素值,利用PSO算法调整粒子代理的运动方式来重组组播树。经过多次迭代,最后形成一个满足QoS的最优组播树。通过仿真实验,与现有的PSOTREE、TGBACA算法进行比较。结果表明,该算法能够找出更好的组播树模型,不仅能够满足QoS约束,而且还最大限度地减少了树的成本。For the optimisation issue of multicast routing of quality of service (QoS) with multi-constraint in Internet multicast applications, we propose a QoS-AP algorithm, which is based on swarming agents and integrates ant colony optimisation (ACO) and particle swarm optimisation (PSO). First, according to QoS constraints it generates several multicast models. Secondly, it evaluates every model and the attribute of each model using ACO algorithm, and places the pheromones as well. Thirdly, according to the pheromone value, it reconstructs the muhieast tree by adjusting the motion ways of particle agent through pso. After several times of iteration, finally it forms an optimal multicast tree satisfying the QoS. Through simulation experiment, QoS-AP is compared with existing PSOTREE and TGBACA algorithms. Results show that, the algorithm is able to find better multicast trees model, and can meet the QoS constraints as well as minimise the cost of the tree.

关 键 词:多约束QoS组播路由 群代理 蚁群算法 粒子群算法 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象