检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州航空工业管理学院,河南郑州450015 [2]河南牧业经济学院,河南郑州450046 [3]西安应用光学研究所,陕西西安710065
出 处:《计算机应用与软件》2015年第9期149-151,191,共4页Computer Applications and Software
摘 要:基于视词字典树的算法由于高效性使其在基于大规模图像数据库的目标检索领域得到了广泛地应用。该类算法属于从文字搜索领域借鉴来的"视觉词袋"的算法。这种算法中的一个关键步骤是将高维特征向量量化成视词。将这种量化过程看作高维特征向量的最近邻搜索问题,并且提出一种随机维哈希(RDH)算法用于索引视词字典。实验结果证明,该算法比基于字典树的算法具有更高的量化精度,从而可以显著提高目标检索性能。Visual-words dictionary tree-based algorithm has been widely applied in object retrieval in large-scale image database due to its efficiency. Such algorithm appertains to the bag-of-visual-words algorithm which is borrowed from text search field. A key step of such algo- rithm is to quantify the high-dimensional feature vectors to the visual words. In this paper, we consider the quantification process as the nea- rest neighbour search of high-dimensional feature vectors, and propose a randomised dimensions hashing algorithm to index the visual-word dictionary. Experimental results demonstrate that the proposed algorithm has higher quantification accuracy than the vocabulary tree-based al- gorithms, thus it can significantly improve object retrieval performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.108.175