检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]丽水学院工程与设计学院,浙江丽水323000
出 处:《上海交通大学学报》2015年第8期1137-1143,共7页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金项目(11171137);浙江省自然科学基金项目(LY13A010008)资助
摘 要:基于离散傅里叶变换-极限学习机(DFT-ELM)提出了一种新的单隐层前馈神经网络在线贯序学习算法,命名为"在线贯序-离散傅里叶变换-极限学习机"(OS-DFT-ELM).该算法能够逐个或逐段学习数据,随着新数据的逐渐到达,单隐层前馈神经网络的内权矩阵和外权矩阵得到逐步调整.该算法与在线贯序-极限学习机(OS-ELM)相比,具有更高的精度和鲁棒性.同时,通过实验和分析,表明OS-DFT-ELM具有优良性能.In this paper,a kind of accurate and robust online sequential learning algorithm was proposed for single hidden layer feedforward networks.The algorithm is referred to as online sequential discrete Fourier transform-extreme learning machine(OS-DFT-ELM).This approach is able to learn data one-by-one or chunk-by-chunk.During the growth of the data,input weights and output weights are adjusted incrementally.The proposed algorithm has a higher degree of accuracy and robustness compared to the approach referred to as online sequential-extreme learning machine(OS-ELM).Two simulation examples were presented to show the excellent performance of the proposed approach.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63