Distributed power allocation with a novel signaling in dense OFDMA small cell networks  

Distributed power allocation with a novel signaling in dense OFDMA small cell networks

在线阅读下载全文

作  者:Wang Meng Tian Hui Nie Gaofeng Wang Zhibo Liu Yang 

机构地区:[1]State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications

出  处:《The Journal of China Universities of Posts and Telecommunications》2015年第3期1-8,共8页中国邮电高校学报(英文版)

基  金:supported by the Hi-Tech Research and Development Program of China (2014AA01A701);the Funds for Creative Research Groups of China (61121001)

摘  要:A distributed power allocation scheme was presented to maximize the system capacity in dense small cell networks. A new signaling called inter-cell-signal to interference plus noise ratio (ISINR) as well as its modification was defined to show the algebraic properties of the system capacity. With the help of ISINR, we have an easy way to identify the local monotonicity of the system capacity. Then on each subchannel in iteration, we divide the small cell evolved node B's (SeNBs) into different subsets. For the first subset, the sum rate is convex with respect to the power domain and the power optimally was allocated. On the other hand, for the second subset, the sum rate is monotone decreasing and the SeNBs would abandon the subchannel in this iteration. The two strategies are applied iteratively to improve the system capacity. Simulations show that the proposed scheme can achieve much larger system capacity than the conventional ones. The scheme can achieve a promising tradeoffbetween performance and signaling overhead.A distributed power allocation scheme was presented to maximize the system capacity in dense small cell networks. A new signaling called inter-cell-signal to interference plus noise ratio (ISINR) as well as its modification was defined to show the algebraic properties of the system capacity. With the help of ISINR, we have an easy way to identify the local monotonicity of the system capacity. Then on each subchannel in iteration, we divide the small cell evolved node B's (SeNBs) into different subsets. For the first subset, the sum rate is convex with respect to the power domain and the power optimally was allocated. On the other hand, for the second subset, the sum rate is monotone decreasing and the SeNBs would abandon the subchannel in this iteration. The two strategies are applied iteratively to improve the system capacity. Simulations show that the proposed scheme can achieve much larger system capacity than the conventional ones. The scheme can achieve a promising tradeoffbetween performance and signaling overhead.

关 键 词:power allocation dense small cells Inter-cell-signal to interference plus noise ratio orthogonal frequency division multiple access 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象