一种基于隐式投影积分的有源配电系统动态仿真方法  被引量:4

An Implicit Projective Integration Based Dynamic Simulation Algorithm of Active Distribution Networks

在线阅读下载全文

作  者:王成山[1] 原凯[1] 李鹏[1] 冀浩然 林盾[2] 邢峰[2] 

机构地区:[1]智能电网教育部重点实验室(天津大学),天津市南开区300072 [2]海南电网公司,海南省海口市570203

出  处:《中国电机工程学报》2015年第18期4645-4654,共10页Proceedings of the CSEE

基  金:国家科技支撑计划项目(2013BAA01B03)~~

摘  要:大规模分布式电源的广泛接入对有源配电系统动态特性分析,尤其是发生大扰动后的系统稳定性分析提出了新的挑战。因此,一种可靠、高效且具有良好数值稳定性的动态仿真算法对有源配电系统的分析研究至关重要。文中提出一种基于隐式投影算法的有源配电系统动态仿真方法。该方法为2阶精度算法,其数值稳定性具有与A稳定近似的特征,即算法的数值稳定域基本不受其外部积分步长的限制,使得隐式投影算法的计算效率较传统数值积分方法具有显著提升,适于含大规模分布式电源的有源配电系统动态仿真分析。以低压有源配电系统算例和IEEE 123节点算例为例,通过与商业仿真软件和传统隐式梯形法的比较,验证了算法的正确性和有效性。The widely integrated distributed generators (DG) have brought challenges of analyzing the dynamic characteristics of active distribution networks (ADNs), especially the stability analysis under a large disturbance. A highly efficient and reliable dynamic simulation algorithm with good numerical stability is therefore of great importance for the study of ADNs. This paper presents a novel dynamic simulation algorithm of ADNs based on the implicit projective method. It is a second-order integration method and the numerical stability of which is similar to the A-stable property, namely, the numerical stability is barely limited by the step sizes of its outer integrator. The efficiency of the proposed algorithm is improved significantly compared with the traditional integration methods. It is especially suitable for the dynamic simulation and stability analysis of the ADNs integrated with a number of DGs. Case studies based on the low-voltage ADN benchmark and the IEEE 123-node feeder show the feasibility and effectiveness of the proposed method, which is verified through the comparisons with the commercial simulation tool and the traditional trapezoidal method.

关 键 词:有源配电系统 动态仿真 隐式投影积分算法 微分-代数方程 分布式能源 

分 类 号:TM74[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象