融合关联数据和分众分类的徽州文化数字资源多维度聚合研究  被引量:16

Design and Application of Multi-dimensional Aggregation Based on Huizhou Culture Digital Resources

在线阅读下载全文

作  者:王伟[1] 许鑫[2] 

机构地区:[1]安徽师范大学图书馆,芜湖241000 [2]华东师范大学商学院,上海200241

出  处:《图书情报工作》2015年第14期31-36,58,共7页Library and Information Service

摘  要:[目的 /意义]徽州文化内容丰富,门类众多,其数字资源呈现出海量、分散、异构、多粒度的特点。因此用户既无法在宏观上准确地把握徽州文化的主线,又不能在微观上清晰地定位徽州文化的细节知识点,从海量的徽州文化数字资源中找到所需要的信息。融合关联数据和分众分类的多维度聚类方法可以较好地解决这一问题。[方法 /过程]在方法上综合关联数据聚合与分众分类聚合的优势,取其所长,试图从宏观与微观上全面展现徽州文化数字资源的知识信息。同时在聚合内容上,实现内容来源多元化的徽州文化数据资源的关联数据聚合,展示基于内容的多维度聚合。[结果 /结论]通过实验,有效展示所收集的徽州文化数字资源的主要知识群落与知识单元细节,将来源异构、内容异构、展现异构的徽文化数字资源有序重组,实现知识库与用户需求的无缝融合,提升用户知识获取体验。[ Purpose/significance] Huizhou culture is abundant and has a long history, but its digital resource presents great amount, dispersion, isomerism and multi-granularity features. Users can not accurately grasp the main line of Huizhou culture at the macro and can not clearly locate detail knowledge of Huizhou culture in the micro, so they can not find the information they need from the mass of digital resources in Huizhou culture. [ Method/process ] The paper integrates the advantage of linked data aggregation and classification focus aggregation in aggregation method, trying to show the full knowledge of Huizhou culture digital resources information from the macro and micro. Meanwhile we achieve the linked data aggregation from diversified sources Huizhou culture digital resource sources in the aggregation content aspect, showing the multi-dimensional aggregation based on content aspect. [ Result/conclusion ] We effectively show the main elements of knowledge communities and the detail of knowledge unit of Huizhou culture digital resources from the experi- ments. We restructure Huizhou culture digital resources from isomerism source, isomerism content and isomerism display. We realize seamless integration of library and user needs, and enhance knowledge acquisition to the user experience.

关 键 词:徽州文化 数字资源 多维度聚合 关联数据 分众分类 

分 类 号:G127[文化科学] G254

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象