Parallel and optimized genetic Elman network for ^(252)Cf source-driven verification system  

Parallel and optimized genetic Elman network for ^(252)Cf source-driven verification system

在线阅读下载全文

作  者:冯鹏 魏彪 金晶 

机构地区:[1]Key Laboratory of Opto-electronics Technology & System,Ministry of Education, Chongqing University

出  处:《Nuclear Science and Techniques》2015年第4期65-71,共7页核技术(英文)

基  金:Supported by National Natural Science Foundation of China(Nos.61201346,61175005 and 61401049);the Fundamental Research Funds for the Central Universities(No.CDJZR14125501)

摘  要:The 252Cf source-driven verification system(SDVS)can recognize the enrichment of fissile material with the enrichment-sensitive autocorrelation functions of a detector signal in252Cf source-driven noise-analysis(SDNA)measurements.We propose a parallel and optimized genetic Elman network(POGEN)to identify the enrichment of235U based on the physical properties of the measured autocorrelation functions.Theoretical analysis and experimental results indicate that,for 4 different enrichment fissile materials,due to higher information utilization,more efficient network architecture,and optimized parameters,the POGEN-based algorithm can obtain identification results with higher recognition accuracy,compared to the integrated autocorrelation function(IAF)method.The ^252Cf source-driven verification system (SDVS) can recognize the enrichment of fissile material with the enrichment-sensitive autocorrelation functions of a detector signal in ^252Cf source-driven noise-analysis (SDNA) measurements. We propose a parallel and optimized genetic Elman network (POGEN) to identify the enrichment of ^235U based on the physical properties of the measured autocorrelation functions. Theoretical analysis and experimental results indicate that, for 4 different enrichment fissile materials, due to higher information utilization, more efficient network architecture, and optimized parameters, the POGEN-based algorithm can obtain identification results with higher recognition accuracy, compared to the integrated autocorrelation function (IAF) method.

关 键 词:ELMAN网络 并行优化 验证系统 源驱动 遗传 自相关函数 函数识别 信息利用率 

分 类 号:TL825[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象