检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家新闻出版广电总局广播科学研究院,北京100866 [2]北京数码视讯科技股份有限公司,北京100085
出 处:《电视技术》2015年第18期33-35,49,共4页Video Engineering
基 金:2014年国家新闻出版广电总局科研项目"有线电视大数据融合分析平台设计及关键技术研究"
摘 要:随着广电运营商双向业务的不断发展,为解决用户无法从海量内容中快速找到喜爱节目的问题,个性化推荐技术在广电领域得到了关注和应用。个性化推荐技术在互联网等领域已经有了较成熟的应用,并得到了良好的效果,但若具体落实在广电运营商的业务中并起到良好的作用,还需要解决直播节目元数据关联、推荐实效性、家庭用户行为分析等难点问题。对广电家庭用户个性化推荐存在的难点进行了总结,并提出解决思路。With the development of radio & television operators two-way business, quickly finding a favorite program to solve the problem of facing mass content, and personalizing recommendation technology has been concerned and applied in the field of broadcasting. Persnnalized recommendation technology in the lnternet and other fields has been mature applications, and obtained good effect, but if the concrete implementation in radio & television operators in the business and play a good rnle, still need to solve the difficulties of live broadcast metadata association, the effectiveness of recommendation, and problems such as family user behavior analysis. In this paper, on radio & television home users personalized recommendation existing difficulties are summarized, and brought proposed solutions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46