济南市典型空气污染物与慢性阻塞性肺炎的相关性研究  被引量:1

Study on the Correlation between Typical Air Pollutants and COPD in the City of Jinan

在线阅读下载全文

作  者:周历媛 马德东[2] 吴泉源[1] 蔡东全 刘硕[1] 张龙龙[1] 

机构地区:[1]山东师范大学地理与环境学院,山东济南250014 [2]山东大学齐鲁医院呼吸内科,山东济南250012

出  处:《现代预防医学》2015年第18期3294-3297,3310,共5页Modern Preventive Medicine

基  金:国家自然科学基金资助项目(41371395);国家科技支撑计划项目(2012BAB11B01)

摘  要:目的研究典型空气污染物(SO2、NO2、CO、PM10、O3)与慢性阻塞性肺炎的相关性,为疾病预防和污染治理提供依据。方法依托于地理信息系统操作平台,通过遥感影像反演结果与地面实测浓度的插值,得到研究区内5种污染物浓度的分布趋势;利用统计学原理,求平均、数理统计、建立回归分析等,得到最适宜于研究两者之间关系的模型;利用SPSS,分别以5种污染物月平均浓度为自变量,以每月的慢性阻塞性肺炎患者数量为因变量,进行相关性分析、建立散点图和函数模型,并比较各自参数。结果各污染物浓度分布与患者分布情况趋于一致:浓度高的区域,患者分布密集;SO2、NO2、PM10、CO、O3浓度与患者数量的相关性因子分别为0.681、0.576、0.755、0.611、0.519。结论空气污染越严重,即污染物浓度越高,病患分布越为密集;PM10浓度与病患数量之间函数模型的相关性因子最大,两者相关性最强。Objective This work was to study the correlation between typical air pollutants (SO2, NO2, CO, PM10, O3) and chronic obstructive pulmonarydisease (COPD), providing a basis for disease prevention and air pollution control. Methods The concentration distribution of the five air pollutants was obtained through the interpolation of remote sensing image inversion and ground measurement with the aid of ARCGIS operating platform. Statistical analysis using SPSS software was used to build the mathematical models for the correlation between the concentration of these five pollutants and the number of COPD patients. Results The distribution of pollutant concentration were in consistence with the number of COPD patients. Highly polluted area had high density of COPD population. The correlation coefficients between the concentration of SO2, NO2, CO, PM10, O3 and the number of COPD patients were 0.681, 0.576, 0.755, 0.611, 0.519, respectively. Conclusion Pollutant concentration is positively correlated with the number of COPD patients. The influence of PM10 is the greatest among the five pollutants.

关 键 词:典型空气污染物 慢性阻塞性肺炎 相关性 济南 

分 类 号:R122[医药卫生—环境卫生学] R126.4[医药卫生—公共卫生与预防医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象