机构地区:[1]Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci- Tech University, Hangzhou, Zhejiang 310018, China [2]Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
出 处:《Chinese Journal of Chemistry》2015年第8期847-851,共5页中国化学(英文版)
摘 要:Good film formation is one of basic requirements for organic optoelectronic materials to achieve the capability for fabrication of large area devices. Small molecular optoelectronic compounds have a definite chemical structure and clear device performance, and thus are welcomed in the field. However, they are generally suffering from poor film formation, especially in a large area. For addressing it, this contribution proposes and demonstrates a strategy, that is, changing them into poly(rod-coil) polymers. With one optoelectronic compound [BDT(DTBT)2] and three poly(rod-coil) polymers (P1, P2, and P3) having different non-conjugated coil segments as examples, the work clearly shows that the change to poly(rod-coil) polymers keeps many basic optoelectronic properties of the refer- ence compound, including light absorption in solution, bandgap and frontier orbital energy levels, but suppresses strong intermolecular interactions and crystalline structure in film state. Further comparisons on film formation quality on glass and ITO glass illustrate that all the three polymers have a better film formation property than the reference compound.Good film formation is one of basic requirements for organic optoelectronic materials to achieve the capability for fabrication of large area devices. Small molecular optoelectronic compounds have a definite chemical structure and clear device performance, and thus are welcomed in the field. However, they are generally suffering from poor film formation, especially in a large area. For addressing it, this contribution proposes and demonstrates a strategy, that is, changing them into poly(rod-coil) polymers. With one optoelectronic compound [BDT(DTBT)2] and three poly(rod-coil) polymers (P1, P2, and P3) having different non-conjugated coil segments as examples, the work clearly shows that the change to poly(rod-coil) polymers keeps many basic optoelectronic properties of the refer- ence compound, including light absorption in solution, bandgap and frontier orbital energy levels, but suppresses strong intermolecular interactions and crystalline structure in film state. Further comparisons on film formation quality on glass and ITO glass illustrate that all the three polymers have a better film formation property than the reference compound.
关 键 词:organic optoelectronic materials poly(rod-coil) polymers film formation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...