基于Hadoop的Web服务语义可信QoS发现模型  

Web Service Discovery Model of Semantic and Trust QoS Based on Hadoop

在线阅读下载全文

作  者:何小霞[1] 谭良[1,2] 

机构地区:[1]四川师范大学计算机科学学院,成都610068 [2]中国科学院计算技术研究所,北京100190

出  处:《计算机科学》2015年第8期220-224,243,共6页Computer Science

基  金:国家自然科学基金(61373162);四川省科技支撑项目(2014GZ007)资助

摘  要:随着Web服务应用的快速增长,用户如何在众多功能相似的Web服务中更加准确地选择出满足自己QoS需求的Web服务是一个亟需解决的问题。目前已有的研究工作存在两个问题,其一是对QoS的量化存在客观性和准确性问题,其二是对服务质量缺乏语义描述,QoS匹配时也仅限于数值上的匹配。针对这两个问题,利用Hadoop的分布式注册、查找服务模式,提出了基于Hadoop的Web服务语义可信QoS发现模型。本模型从数值匹配和QoS语义匹配两方面考虑,首先,用主客观赋权模式为多维QoS属性赋权值,提高QoS属性的客观性和准确性,并加入信誉度参数来提高Web服务QoS属性的可信性;其次,对OWL-S进行了QoS本体扩展,以满足客户对服务质量的语义匹配需求。通过验证表明,本模型能有效解决查询瓶颈和单点失效问题,且能根据用户QoS需求偏好更加准确地找到满足用户需要的Web服务。With the rapid growth of the Web service applications, how to select Web service meeting users' QoS requirements more accurately is an emergent problem from many Web services with similar functions. There are two problems in the research work: one is the QoS quantitative problems of objectivity and accuracy, and the other is that the QoS match is also limited tO the matching of numerical value and the lack of semantic description for quality of service. To solve the two problems, using the Hadoop distributed registration and service-seeking mode, we designed the Web service discovery model of semantic and trust QoS based on Hadoop. In the pattern, considering two aspects of QoS se- mantic match and numerical match, first, we used subjective and objective weighting mode to empower multi-dimension QoS properties, improving the objectivity and accuracy of QoS properties, and added credibility parameters to increase the trust of the Web service QoS attributes. Second,we extended the QoS ontology on the OWL-S to meet customer demand for the semantic matching of QoS. Experimental results show that this model can effectively solve the problems of query bottleneck and single point of failure, and accurately find Web services meeting the needs of users according to users' QoS requirements.

关 键 词:WEB服务 HADOOP 语义 QOS本体 QoS权重 可信 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象