检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南科技大学计算机科学与工程学院,湘潭411201
出 处:《计算机科学》2015年第9期37-40,55,共5页Computer Science
基 金:国家自然科学基金(61272063;61370227);湖南省自然科学基金(13JJB004)资助
摘 要:复杂路网拓扑的自动生成建立在道路提取和交叉路口识别的基础之上,是智能交通控制和自动导航服务等领域的研究热点之一,基于浮动车或出租车的GPS轨迹可以反映交通路网的拓扑结构。为此,提出了一种基于GPS轨迹的道路拓扑生成方法,即在无道路地图辅助的情况下,该方法基于大规模GPS轨迹,能够快速提取路口交叉点,自动构建具有地理位置信息的拓扑结构和计算相邻路口的网络距离。实验结果表明,该方法能够提取出各个道路交叉点并建立各点之间的拓扑关系。在提取主干道路拓扑实验中,在设置路宽为55米的情况下提取路口交叉点的正确率达到了87.08%,各路口之间的平均网络距离误差率为8.87%,并且能够正确地得到交叉点之间的连通关系。Automatic generation of complex network topology is based on road extraction and road intersection detec- ting, which is one of the hot research topics in intelligent traffic control and automatic navigation service fields, and GPS trajectories generated by floating cars or taxis can reflect the road topology. Therefore, this article presented a method to extract road intersection and build topology. It extracts road intersections, builds topology with geographical location in- formation based on large-scale GPS trajectories without auxiliary road map, and calculates network distance between any two adjacent road intersections. The result shows that our method can extract road intersection and build topology effec- tively. In our experiment, when the road width is set with 55 meters, the accuracy of extracting road intersection is 87. 08%, the average error rate between adjacent road intersections is 8. 87%, and connected relationship between adjacent intersections can he gotten correctly.
分 类 号:TP315[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33