出 处:《Acta Mechanica Solida Sinica》2015年第4期353-359,共7页固体力学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.11272140,10902046,11032006 and11121202);the Fundamental Research Funds for the Central Universities(lzujbky-2015-176);National Key Project of Magneto-Constrained Fusion Energy Development Program(2013GB110002)
摘 要:This paper presents a fully coupled model to account for the flux pinning induced giant magnetostriction in type-Ⅱ superconductors under alternating magnetic field The superconductor E-J constitutive law is characterized by power law where the critical current density is assumed to depend exponentially on the flux density. The governing equations of the two-field problem (i.e., the interactions of elastic and magnetic effects) are formulated in a two-dimensional model. The magnetostriction curves and magnetization loops are calculated over a wide range of parameters. The effects of applied magnetic field frequency f and amplitude B0 and critical current density on magnetostriction and magnetization are discussed. Results show that the critical current density of high temperature superconductor (HTS) YBCO has a significant effect on the magnetization and magnetostriction. The pinning-induced magnetostriction which has been observed in experiment can be qualitatively simulated by this model.This paper presents a fully coupled model to account for the flux pinning induced giant magnetostriction in type-Ⅱ superconductors under alternating magnetic field The superconductor E-J constitutive law is characterized by power law where the critical current density is assumed to depend exponentially on the flux density. The governing equations of the two-field problem (i.e., the interactions of elastic and magnetic effects) are formulated in a two-dimensional model. The magnetostriction curves and magnetization loops are calculated over a wide range of parameters. The effects of applied magnetic field frequency f and amplitude B0 and critical current density on magnetostriction and magnetization are discussed. Results show that the critical current density of high temperature superconductor (HTS) YBCO has a significant effect on the magnetization and magnetostriction. The pinning-induced magnetostriction which has been observed in experiment can be qualitatively simulated by this model.
关 键 词:high temperature superconductor (HTS) giant magnetostriction magnetization magneto-mechanical couple alternating magnetic field
分 类 号:TM26[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...