Use of fly ash with no water consumption for cold regions transportation infrastructure  

在线阅读下载全文

作  者:Gokhan Baykal 

机构地区:[1]Department of Civil Engineering,Bogazici University

出  处:《Research in Cold and Arid Regions》2015年第5期619-625,共7页寒旱区科学(英文版)

基  金:supported by the Scientific and Technological Research Council of Turkey(TUBITAK)with two projects(INTAG 606 and INTAG 627);supported by the Bogazici University Scientific Research Program titled BAP 639

摘  要:The construction period in cold regions is very short due to problems related to excavation and use of frozen soils in embankment construction, which leads to excessive deformations upon thawing. Also, handling of compaction water is critical due to freezing temperatures. Coalburning thermal power plants are very common in cold regions to supply electricity. The inorganic part of the pulverized coal after burning produces fly ash, which is available in large volumes. Due to excavation difficulties and the poor engineering behavior of frozen soils in cold regions, the utilization of fly ash when it is readily available must be promoted. Any construction technique which utilizes alternative materials like fly ash and minimizes water consumption has a potential to extend the short construction season and even allow service and maintenance during extreme weather conditions. This paper presents two potential techniques to solve the moisture affinity of silt-sized materials like fly ash. One technique involves in-plant production of fly ash pellets using cold-bonding pelletization to manufacture aggregates of up to 40,000-~tm diameter from 15- to 60-~tm-diameter fly ash grains. Large disc pelletizers have annual production capacities of up to one million ton at a reasonable cost. The product has adequate strength for embankment construction even when no water is used and no compaction is applied. The second technique is an in situ mixing technique which uses snow instead of compaction water for fly ash. The snow is the main element in this technique to compact the embankment. Water is needed for the hydration reactions to form cementitious minerals in fly ash. The slower the hydration reaction, the greater the crystal growth of cementitious minerals. In the proposed technique, in situ snow is mixed with fly ash and is compacted on-site. The temperature increase due to the hydration reaction of fly ash upon contact with snow crystals provides water for continued long-term hydration, which results in high strength, a higThe construction period in cold regions is very short due to problems related to excavation and use of frozen soils in embankment construction, which leads to excessive deformations upon thawing. Also, handling of compaction water is critical due to freezing temperatures. Coalburning thermal power plants are very common in cold regions to supply electricity. The inorganic part of the pulverized coal after burning produces fly ash, which is available in large volumes. Due to excavation difficulties and the poor engineering behavior of frozen soils in cold regions, the utilization of fly ash when it is readily available must be promoted. Any construction technique which utilizes alternative materials like fly ash and minimizes water consumption has a potential to extend the short construction season and even allow service and maintenance during extreme weather conditions. This paper presents two potential techniques to solve the moisture affinity of silt-sized materials like fly ash. One technique involves in-plant production of fly ash pellets using cold-bonding pelletization to manufacture aggregates of up to 40,000-~tm diameter from 15- to 60-~tm-diameter fly ash grains. Large disc pelletizers have annual production capacities of up to one million ton at a reasonable cost. The product has adequate strength for embankment construction even when no water is used and no compaction is applied. The second technique is an in situ mixing technique which uses snow instead of compaction water for fly ash. The snow is the main element in this technique to compact the embankment. Water is needed for the hydration reactions to form cementitious minerals in fly ash. The slower the hydration reaction, the greater the crystal growth of cementitious minerals. In the proposed technique, in situ snow is mixed with fly ash and is compacted on-site. The temperature increase due to the hydration reaction of fly ash upon contact with snow crystals provides water for continued long-term hydration, which results in high strength, a hig

关 键 词:cold regions embankment construction frozen soil compaction water fly ash pellets snow-compacted fly ash 

分 类 号:U416.16[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象