结合MRF与ν-SVM的SAR海冰图像分类  被引量:9

Combining MRF and ν-SVM for SAR sea ice image classification

在线阅读下载全文

作  者:沈杨[1] 郎文辉[1] 吴杰[1] 杨学志[1] 

机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009

出  处:《遥感学报》2015年第5期844-855,共12页NATIONAL REMOTE SENSING BULLETIN

基  金:国家自然科学基金(编号:61271381;61371154;61102154);航空科学基金(编号:201301P4007);中央高校基本科研业务费专项资金(编号:2012HGCX0001)

摘  要:结合支持向量机SVM和马尔可夫随机场MRF在图像分类领域的优点,提出MRF-ν-SVC分类系统。与以往针对像素的分类不同,本系统在区域水平实现分类。首先通过双阈值准则判别区域间边缘的强弱,然后针对模糊边缘区域将基于MRF的空间语境模型改进为边缘语境模型,修正SVM原始问题中的偏差因子,从而优化最优分类超平面。实验表明,本文算法可有效提高分类精度,增强对斑点噪声的抑制能力,更好地分类特征相似的区域。In this study,we put forward an MRF-ν-SVM classification system that integrates spatial contextual information with SVM while taking advantage of the good classification performance of SVM for small samples and its effective capacity to model the spatial correlation of MRFs. The system performs classification at the regional level instead of at the pixel level. To protect the image edge structure,we set up a dual threshold for local edge intensity and refine the MRF-based spatial contextual model to a contextual model for fuzzy edges. The bias of the original problems of SVM is then optimized to improve the optimal hyperplane.Sea ice is an important component of the global climate system. As a unique coherent imaging system,the Synthetic Aperture Radar( SAR) provides high-resolution images and serves as an important tool for monitoring sea ice. Sea ice image classification via SAR is thus an effective method for monitoring sea ice. This study integrates the spatial correlation based on MRF into the support vector classifier. Using the spatial contextual information based on MRF can improve scene interpretation accuracy. Meanwhile,SVM has good generalization ability and efficient classification performance,as well as high robustness to the Hughes phenomenon. MRF is thus used to model space interaction in the SVM framework.The watershed segmentation algorithm is used to obtain a number of homogeneous areas and the edges of closed regions. The image is then classified at the regional level. We extract the gray tone and three GLCM texture statistics,namely,entropy,contrast,and correlation,as the regional feature vector of the samples. For the characteristics of the sea ice image obtained via SAR,we use a window of a certain size to collect training samples and to record the edge information of each window image. The spatial contextual model based on the neighborhood system is optimized to the contextual model of the edge,which is introduced to the bias of the SVM,to structure the contextual bias of the edge and

关 键 词:合成孔径雷达s V-支持向量机 马尔可夫随机场 海冰 分类 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象