The de-excited energy of electron capture in accreting neutron star crusts  被引量:1

The de-excited energy of electron capture in accreting neutron star crusts

在线阅读下载全文

作  者:Jie Zhang 

机构地区:[1]Institute of Theoretical Physics, China West Normal University

出  处:《Research in Astronomy and Astrophysics》2015年第9期1483-1492,共10页天文和天体物理学研究(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Nos. 11273020, 11305133 and U1331121);China Scholarship (Grant No. 2011851096);the Science Foundation of China West Normal University (Grant No. 11B007)

摘  要:When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, ther- mal energy will be released and heat the crust, increasing crust temperature and chang- ing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evo- lution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theo- retical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is -0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts.When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, ther- mal energy will be released and heat the crust, increasing crust temperature and chang- ing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evo- lution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theo- retical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is -0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts.

关 键 词:stars: neutrons -- nuclear reactions -- nucleosynthesis -- abundances 

分 类 号:P145.6[天文地球—天体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象