Enhancement of luminescence intensity and color purity of Mg_x Zn_(1–x) MoO_4:Eu^(3+),Bi^(3+) phosphors  

Enhancement of luminescence intensity and color purity of Mg_x Zn_(1–x) MoO_4:Eu^(3+),Bi^(3+) phosphors

在线阅读下载全文

作  者:莫福旺 陈培灿 关安翔 张伟 周立亚 

机构地区:[1]School of Chemistry and Chemical Engineering, Guangxi University

出  处:《Journal of Rare Earths》2015年第10期1064-1071,共8页稀土学报(英文版)

基  金:Project supported by National Natural Science Foundation of China(61264003);the Science Foundation of Guangxi Province(2015GXNSFAA139025);Innovation Project of Guangxi Graduate Education(YCBZ2014010);the Students Innovation and Entrepreneurship Training Program of Guangxi University(201410593101)

摘  要:ZDAMoO4:Eu3+ red phosphors co-doped with Mg2+ and Bi3+ were synthesized using a solid-state reaction. X-ray powder diffraction, scanning electron microscopy, and photoluminescence analysis were used for characterizing the phosphors. The introduction of Mg2+ into a Zn2+ site further enhanced the emission intensity of the 5D0→VF2 transition since the asymmetry ofa Eu3+ site increased when Zn2+ was substituted by Mg2+. The co-doped Bi3+ efficiently sensitized the emission of Eu3+ and effectively extended the absorption of near-ultraviolet light with wavelengths ranging from 300 to 370 nm. The high color purity of Mg0.10Zn0.84MoO4:Eu0.053+,Bi0.013+ was calculated to be 91.80%. The thermal quenching temperature Td was about 387 K and the activation energy for thermal quench- ing was found to be about 0.31 eV for Mg0.10Zn0.84MoO4.Eu0.053+,Bi0.013+, respectively. Moreover, the results revealed that the energy transfer was more effective when the Zn0.95MoO4:Eu0.053+ phosphors were co-doped with Mg2+ ions and Bi3+ ions than those doped only with Mg2+ ions.ZDAMoO4:Eu3+ red phosphors co-doped with Mg2+ and Bi3+ were synthesized using a solid-state reaction. X-ray powder diffraction, scanning electron microscopy, and photoluminescence analysis were used for characterizing the phosphors. The introduction of Mg2+ into a Zn2+ site further enhanced the emission intensity of the 5D0→VF2 transition since the asymmetry ofa Eu3+ site increased when Zn2+ was substituted by Mg2+. The co-doped Bi3+ efficiently sensitized the emission of Eu3+ and effectively extended the absorption of near-ultraviolet light with wavelengths ranging from 300 to 370 nm. The high color purity of Mg0.10Zn0.84MoO4:Eu0.053+,Bi0.013+ was calculated to be 91.80%. The thermal quenching temperature Td was about 387 K and the activation energy for thermal quench- ing was found to be about 0.31 eV for Mg0.10Zn0.84MoO4.Eu0.053+,Bi0.013+, respectively. Moreover, the results revealed that the energy transfer was more effective when the Zn0.95MoO4:Eu0.053+ phosphors were co-doped with Mg2+ ions and Bi3+ ions than those doped only with Mg2+ ions.

关 键 词:optical materials LUMINESCENCE X-ray diffraction rare earths 

分 类 号:TQ422[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象