Solvent extraction performance of Ce(Ⅲ) from chloride acidic solution with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(EHEHPA) by using membrane dispersion micro-extractor  被引量:8

Solvent extraction performance of Ce(Ⅲ) from chloride acidic solution with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(EHEHPA) by using membrane dispersion micro-extractor

在线阅读下载全文

作  者:侯海龙 靖宇 王月 王运东 徐建鸿 陈晋南 

机构地区:[1]School of Chemical Engineering and Environment, Beijing Institute of Technology [2]The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University

出  处:《Journal of Rare Earths》2015年第10期1114-1121,共8页稀土学报(英文版)

基  金:Project supported by the National Basic Research Program of China(2012CBA01203);the National Natural Science Foundation of China(90210034,20221603)

摘  要:By using membrane dispersion micro-extractor, Ce(IIl) solvent extraction experiments were conducted. Cerium chloride solution with certain acidity was used as aqueous phase and 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) kerosene solution as organic phase. The effects of system physicochemical properties and operational conditions, such as initial EHEHPA concentration, initial aqueous acidity, total flow rate and continuous phase flow rate, etc., on the extraction efficiency and the overall volume mass transfer coefficient were evaluated. As the total flow rate increased fi'om 20 to 160 mL/min, the overall volume mass transfer coefficient was enhanced from 0.1 to 0.54 S1. Under the optimal conditions, the Ce(III) extraction efficiency could reach 99.92% in 2.98 s. A mathematical model was set up to predict the overall volume mass transfer coefficient, and the calculation results agreed well with the experimental results, most relative error was within +10%.By using membrane dispersion micro-extractor, Ce(IIl) solvent extraction experiments were conducted. Cerium chloride solution with certain acidity was used as aqueous phase and 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) kerosene solution as organic phase. The effects of system physicochemical properties and operational conditions, such as initial EHEHPA concentration, initial aqueous acidity, total flow rate and continuous phase flow rate, etc., on the extraction efficiency and the overall volume mass transfer coefficient were evaluated. As the total flow rate increased fi'om 20 to 160 mL/min, the overall volume mass transfer coefficient was enhanced from 0.1 to 0.54 S1. Under the optimal conditions, the Ce(III) extraction efficiency could reach 99.92% in 2.98 s. A mathematical model was set up to predict the overall volume mass transfer coefficient, and the calculation results agreed well with the experimental results, most relative error was within +10%.

关 键 词:rare earths solvent extraction membrane dispersion overall volume mass transfer coefficient 

分 类 号:O658.2[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象