基于证据理论加权的电力负荷组合预测  

在线阅读下载全文

作  者:李娜[1] 赵建东[1] 

机构地区:[1]青岛黄海学院实践教学部

出  处:《电气应用》2015年第15期48-51,60,共5页Electrotechnical Application

摘  要:为了提高电力负荷的预测准确度,提出了一种基于证据理论加权的电力负荷组合预测模型。首先分别采用自回归移动平均模型、灰色模型和BP神经网络对电力负荷进行预测,分别得到电力负荷的线性、周期性和非线性预测结果;然后采用证据理论确定自回归移动平均模型、灰色模型和BP神经网络的预测权值;最后进行加权得到电力负荷的预测结果,并将该模型应用于具体的电力负荷建模与预测中。实验结果表明,该模型可以描述各单一模型对电力负荷预测结果的贡献,更加准确地描述电力负荷的变化特点,预测准确度能够满足实际应用的要求。

关 键 词:电力负荷 自回归移动平均模型 证据理论 模型加权 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象