自适应冗余提升小波包变换的滚动轴承故障诊断新方法  被引量:1

FAULT DIAGNOSIS NEW METHOD OF ROLLING BEARING BASED ON ADAPTIVE REDUNDANT LIFTING SCHEME PACKET

在线阅读下载全文

作  者:肖顺根[1] 宋萌萌[1] 赖联锋[1] 

机构地区:[1]宁德师范学院物理与电气工程系,宁德352100

出  处:《机械强度》2015年第5期816-822,共7页Journal of Mechanical Strength

基  金:福建省自然科学基金(2015J01643);福建省中青年教师教育科研项目(JA14332);宁德师范学院"服务宁德区域经济和产业发展"专项课题(2013F25;2013F26);宁德师范学院光电子技术科研创新团队(2013T03)资助~~

摘  要:针对滚动轴承故障微弱信号特征识别问题,提出一种非抽样运算的自适应冗余提升小波包诊断方法,解决了传统的小波包或提升小波变换进行抽样运算造成故障信息失真问题。该方法以提升原理为基础,通过Lagrange插值细分思想计算初始的非抽样预测和更新算子,进而构造了自适应冗余提升小波包分解与重构算法。对仿真信号进行降噪与抗频率混叠实验,结果表明,该方法降噪能力优于传统小波包,且不存在频率混叠现象。在异步电动机上实测了滚动轴承6205无故障、内圈故障、外圈故障及滚动体故障时的振动信号,用这种方法成功提取了各类故障的特征频率及倍频,且比传统小波包具有更高的诊断精度。Aiming at feature identification of weak signal for rolling bearing fault, an adaptive redundant lifting scheme packet (ARLSP) diagnostic method of undecimated operation was proposed to solve the fauhs distortion that caused by traditional wavelet packet or lifting wavelet transform using sample operation. ARLSP was based on the principle of lifting scheme. Initial undecimated prediction and update operator were calculated by Lagrange interpolating subdivision, and then constructed an ARLSP decomposition and reconstruction algorithm. Simulation signals were tried out by denoising and anti frequency aliasing, results show that ARLSP method was superior to the traditional wavelet packet in denoising capabilities, and there are no frequency aliasing. Moreover, taking an experiment on an asynchronous motor, the vibration signals of the rolling bearings 6205 under conditions of no fault, the inner ring fault, outer ring fault and rolling fault were measured. ARLSP method has been successfully used to extract characteristic frequency and frequency multiplication for various faults, and has got a higher diagnostic accuracy than traditional wavelet packet.

关 键 词:滚动轴承 自适应冗余提升小波包 故障诊断 传统小波包 频率混叠 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TH133.33[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象