检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算力学学报》2015年第4期544-547,共4页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(51278182)资助项目
摘 要:求解弹性力学问题的应力时,如果采用常规的位移有限元法,需要先求得单元的节点位移,再经过求导运算得到。为了解决这种求解方式引起的应力精度下降的问题,提出了弹性力学问题的一阶多变量形式,使得应力与位移精度同阶,并推导了弱形式。采用有限元方法,对弹性力学问题给出了一阶解法的二维、三维数值算例,并且将一阶解法的结果与常规位移有限元法的解进行了比较。数值计算结果表明,一阶解法有效提高了应力的精度,并且应力的误差和节点位移的误差具有相同的收敛阶,验证了本文方法的有效性,为提高有限元法的应力精度提供了新的思路。In the conventional displacement finite element methods,the stresses are obtained from a diffe-rential operation after the nodal displacements are determined,which is not accurate.In order to improve the stress accuracy,a first-order multi-variable form is proposed to make sure the order of stresses and displacements are equal,and the weak form is then derived.Using the finite element method,a two-dimensional and a three-dimensional elastic problem is solved by first-order method respectively,and the first-order solutions and the solutions of the conventional displacement finite element method were com-pared.The numerical results show that the first-order solution effectively improves the accuracy of the stresses while the displacement errors and the stress errors have the same convergence order,which verify the effectiveness of the method and provides a new idea of improving the stress accuracy of the finite element method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.71.161