检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北石油大学计算机与信息技术学院,黑龙江大庆163318
出 处:《计算技术与自动化》2015年第3期52-54,共3页Computing Technology and Automation
摘 要:目前为止,现有的油田开发指标预测方法难以反映实际存在的时间累积效应对该指标预测的影响。因此,为提高油田开发指标预测的准确度,本文提出基于径向基过程神经元网络的油田开发动态指标预测模型,并将其应用到实际油田开发动态指标的预测中。实例分析结果表明,本文提出的径向基过程神经元网络的油田开发动态指标的预测方法精度高、速度快,是预测油田开发指标的一种较实用的方法。Because the existing methods are difficult to reflect the effect of actual existence of time accumulation on oil-field development indicators prediction,so in order to improve the forecast accuracy,this paper presented a model of oilfield development indicators prediction based on radial basis process neural network,which was applied to the actual dynamic oil-field development indicators prediction.Example analysis shows that the proposed method has high precision and fast speed. So it is a more practical method for prediction of development indicators of oilfield.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157