检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《塑性工程学报》2015年第4期161-165,共5页Journal of Plasticity Engineering
基 金:国家自然科学基金资助项目(50879097)
摘 要:以平衡方程、Mises屈服条件为基本方程,推导了理想弹塑性材料Ⅱ型平面应力裂纹线场弹塑性极坐标幂级数形式解和弹塑性边界(塑性区范围)。在极坐标系下,以弹塑性边界上应力满足连续条件直接进行匹配,不需要进行坐标变换补充匹配方程,简化了匹配过程。通过对裂纹线上塑性区长度的比较分析表明,应力强度因子断裂理论求解得到的塑性区范围只适用于应力荷载较小的情况,随着应力荷载的增大,精度降低。In polar coordinates, analytical method on field of line is applied to deduce the solution Mode Ⅱ cracking of elastic-per- fectly-plastic material in form of power series in elastic-plastic zone and elastic-plastic boundary (scope of plastic zone) near to stress cracking line of elastic-perfectly-plastic material Mode Ⅱ plane under uniform shear action, on the basis of equilibrium e- quation and Mises yield condition. The stress matching of each direction on the plastic-elastic boundary gives up the assumption of elastic stress field meeting yield condition on plastic-elastic boundary, which solves the interruption and discontinuity of tangential normal stress under the assumption. Through the comparative analysis of length in plastic zone on the cracking line, the plastic zone scope after the solution of fracture theory on stress intensity factor only applies to smaller stress loading action, accuracy reduces with the increase of stress loading.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225