检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学计算机学院,南京210003 [2]中国电信股份有限公司南京分公司,南京210008
出 处:《计算机应用》2015年第10期2872-2876,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(61300054)
摘 要:由于网络用户多样性和利益诉求的复杂性,部分用户发布的Qo S数据不完全可信,以致影响了Qo S评估的精度,为此提出基于可信推荐的Qo S评估模型TR-SQE。该模型以用户推荐的与众不同程度作为其推荐信任度,隔离推荐信任度低于阈值的用户发布的Qo S数据;TR-SQE将修正过的QOS信息作为推荐数据,接着根据用户与推荐者的偏好相似性来评估服务质量。分析和仿真结果表明,TR-SQE的平均绝对偏差MAE较其他方法小,评估结果与真实的服务质量基本相符,TR-SQE有助于用户的服务选择。Due to the diversity of Web users and their complex personal demands, Quality of Service (QoS) information released by some users is not completely reliable, which affects the accuracy of the evaluation on service quality. To address this problem, a service quality evaluation model based on Credible Recommendation (TR-SQE) was presented. In TR-SQE, recommendation trust for the user was defined as the degree of similarity between user's recommendation data and user group's accumulated recommendation data. QoS data released by the user whose recommendations trust was lower than threshold were shielded. By using such correctional QoS information as recommendation data of service quality, then the user, according to the degree of similarity with recommended preference, evaluated service quality. Analysis and simulation results demonstrate that evaluation results from TR-SQE are basically consistent with the real quality of service, which has smaller MAE compared with the contrast methods, and it is helpful to the user's service selection.
分 类 号:TP393.0[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229