机构地区:[1]Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education [2]College of Chemistry and Chemical Engineering, Southwest University [3]College of Pharmaceutical Science, Southwest University
出 处:《Science China Chemistry》2015年第10期1553-1560,共8页中国科学(化学英文版)
基 金:supported by the National Natural Science Foundation of China(21175109);the Chongqing Key Laboratory Special Fund
摘 要:Precise control of the size and morphology of metal-organic frameworks(MOFs) presents an important direction for extending these inorganic-organic materials to many more advanced applications. However, because of the limit of the crystal-growth rule and mechanism, good-control of the size and morphology of MOFs remains challenging. In this contribution, an iron-terephthalic acid metal-organic framework with different shapes(octahedron, spindle and bipyramidal hexagonal) was easily and reproducibly synthesized via a solvothermal method. Sodium acetate and glycerol were used as modulators. Mechanism studies showed that the crystal nucleation rate and orientational growth both play important roles in determining the final shape of the MOFs. Further investigations showed that the as prepared MOFs exhibit shape-dependent catalytic activities, which means that MOFs can be designed to perform different catalytic functions. This investigation not only provides an effective guideline for the precise control of the size and morphology of metal-organic frameworks, but also extends MOFs to much more advanced applications in terms of catalyst chemistry.Precise control of the size and morphology of metal-organic frameworks(MOFs) presents an important direction for extending these inorganic-organic materials to many more advanced applications. However, because of the limit of the crystal-growth rule and mechanism, good-control of the size and morphology of MOFs remains challenging. In this contribution, an iron-terephthalic acid metal-organic framework with different shapes(octahedron, spindle and bipyramidal hexagonal) was easily and reproducibly synthesized via a solvothermal method. Sodium acetate and glycerol were used as modulators. Mechanism studies showed that the crystal nucleation rate and orientational growth both play important roles in determining the final shape of the MOFs. Further investigations showed that the as prepared MOFs exhibit shape-dependent catalytic activities, which means that MOFs can be designed to perform different catalytic functions. This investigation not only provides an effective guideline for the precise control of the size and morphology of metal-organic frameworks, but also extends MOFs to much more advanced applications in terms of catalyst chemistry.
关 键 词:controllable synthesis metal-organic frameworks catalytic activity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...