参数有界约束下的最小二乘平差算法  被引量:3

On the application of parameter-bounded least squares adjustment algorithm

在线阅读下载全文

作  者:左廷英[1] 陈仲儿 宋迎春[1] 

机构地区:[1]中南大学地球科学与信息物理学院,湖南长沙410083

出  处:《测绘工程》2015年第9期1-4,共4页Engineering of Surveying and Mapping

基  金:国家自然科学基金资助项目(49774209)

摘  要:文中基于测量不确定度理论,建立参数有界约束下的平差模型及其解算方法。顾及变形监测网特点,将该平差模型及算法应用到沉降监测网实例中,即利用已知先验信息,建立相应约束模型,求得有界条件下的参数最优估值。通过与经典最小二乘平差法比较,结果证明模型的有效性,估计的参数值控制在给定范围内且不"失真",其沉降量更接近实际情况。Uncertainty is inevitable, but for the data processing, the existence of uncertainty will influence the reliability of the parameter estimation. Based on the uncertainty theory, a parameter-bounded adjustment model and the algorithm is established. Considering the characteristics of deformation monitoring network,it uses the model and algorithm to the instance of subsidence monitoring network, establishes constraint model by using the known prior information, and calculates the optimum estimations of parameters under the bounded conditions. By comparing with the traditional least squares adjustment method, it proves the model is effective that the estimations of the parameters are in the given ranges, without "distortion", of which the subsidences are closer to the actual situation.

关 键 词:不确定度理论 平差模型 参数有界 最小二乘估计 沉降监测网 

分 类 号:P207.2[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象