检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖文显[1] 褚镭郦 王俊阁[1] 刘震[1] 马孝琴[1]
机构地区:[1]河南科技学院网络信息中心,河南新乡453003 [2]合肥工业大学宣城校区信息工程系,安徽宣城242000
出 处:《安徽大学学报(自然科学版)》2015年第4期31-36,共6页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金资助项目(71171151);河南省教育厅自然科学研究计划(13B520011)
摘 要:细菌觅食算法在求解优化问题时,以固定的步长进行趋向操作,同时以固定概率对细菌个体进行随机驱散操作,虽然可以一定程度上增加种群多样性,但是在进化后期容易使优秀的个体流失,影响算法的寻优质量.针对上述问题,论文提出步长自适应调整和驱散概率自适应调整两项改进策略,分别根据算法进化程度和细菌个体的能量值动态调整趋向操作的步长和驱散操作的概率,从而使算法在保证种群多样性的前提下,保持细菌个体具有较高觅食能力,促进算法局部搜索和全局优化的平衡.对标准测试函数和TSP问题的测试结果表明:基于自学习的细菌觅食算法具有较强的全局寻优能力,适合求解高维复杂优化问题.The search procedure was performed in a fixed step length and the random dispersal was processed in a fixed frequency when applying bacterial foraging algorithm in optimization problems. Diversity of population could be increased through the traditional algorithm, however, efficiency of the algorithm was compromised for possible loss of samples in later period. Two improvements, including the self-adaption of the search step length and dispersal probability according to the evolution level and the energy value of bacteria, were proposed in this study. The improvements were mainly aimed at enhancing the balance between local search and global optimization while keeping the diversity of populations. The proposed algorithm had been applied on the standard test function and TSP problem, and the results indicated that the algorithm was suited for complex high dimensional optimization problems with better global search capability.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38