检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军事交通学院研究生管理大队,天津300161 [2]军事交通学院基础部,天津300161
出 处:《公路交通科技》2015年第10期120-123,共4页Journal of Highway and Transportation Research and Development
摘 要:为提高公路网特别是大规模复杂公路网关键节点的辨识效率,基于空间加权网络的度模型和复杂网络中辨识关键节点的LISH模型,以融合交通特性节点度和LISH模型来识别公路网中的关键节点。通过采用重新定义的具有交通特性的节点度,将公路网的交通特性因素加入LISH模型之中,完善了其在公路网关键节点辨识方面的应用条件,从而建立了公路网关键节点辨识的新方法。然后,以陕西省骨干公路网为研究对象,计算得出了陕西省骨干公路网关键节点,验证了模型的可行性和合理性。对比辨识结果表明:该模型对于辨识公路网关键节点较以往模型存在一定的优势,可以为快速获取大规模复杂公路网中的关键节点及与GIS技术结合实现公路网关键节点辨识提供一定的技术手段。In order to improve the efficiency of identifying key nodes in road network especially in large-scale complex road network, based on the spatial weighted network degree model and the LISH model used for identifying key nodes in complex network, key nodes in road network are identified based on fusing node degree of traffic characteristics with LISH model. By using new definition of node degree with traffic characteristics, the factor of traffic characteristics of road network is added into the LISH model. This method improved the application condition of LISH model when it is used for identifying key nodes in road network, and the new method of identifying key nodes in road network is established. Then, taking Shaanxi Province backbone road network as the research object, its key nodes are calculated, which validated the feasibility and rationality of our model. The comparison of the identification results shows that the proposed model has certain advantage in identification of key nodes in road network than previous models, which can provide certain technical means for rapidly obtaining the key nodes in large-scale complex road network and achieve identification of key nodes in road network combining with GIS technique.
关 键 词:交通工程 公路网 LISH模型 关键节点辨识 节点介数
分 类 号:U491.13[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30